

PROJECT FACTS

Start: 1st December 2020

Duration: 28 Months

Call: H2020-SPACE-2018-2020

Topic: SPACE-29-TEC-2020, Satellite

communication technologies

Type: Research & Innovation Action

FOLLOW US

@dynasat_project

DYNASAT project

dynasat.eu

ThalesAlenia

DEMO 1

MAGISTER

Coordinated Dynamic Spectrum Allocation (C-DSA) for Efficient Spectrum Utilization

- == Enablement of flexible spectrum sharing between Terrestrial Networks (TN) and Non-Terrestrial Networks (NTN)
- Definition of required measurements, signals, and system architecture
- Limitation of allowed spectrum per system based on current needs
- Efficient utilization of satellite connectivity for coverage extension where TN connectivity is not possible or financially feasible
- Example results show significant gains from C-DSA for NTN users with minimal losses for TN users in comparison to an uncoordinated, fully shared spectrum.

C-DSA scenario visualized in SimLab and user throughput distributions with and without C-DSA

DEMO 2

Non-Coordinated Spectrum Sharing for Efficient Spectrum Utilization

- Allows the coexistence of TN and NTN in the same frequency band.
- Can be applied to create coverage at sea (NTN) and on land (TN), between neighboring countries with different TN deployment timelines.
- Cooperating NTN and TN operators can flexibly tune the sharing parameters to maximize their common business targets.
- Provides spectrum utilization benefits as a significant improvement of coverage without causing harmful interference between NTN and TN, and as a possibility for accelerated allocation of spectrum for NTN broadband 5G and 6G communications.

DEMO 3

Multi-Connectivity for Bandwidth-Efficient Techniques

- Inter/Intra satellite Multi-Connectivity (MC) for throughput/reliability enhancement
- Design of MC related algorithms:
 - Secondary node addition
 - Traffic steering
- System architecture definition, including measurements and signalling, as well as scenarios where MC would be beneficial
- -1- In the evaluation scenario, enabling MC showed significant throughput and resource utilization enhancements.s

SimLab service reporting and visualization view showing MC results and scenarios